
AD-A267 117 spec•al Report

Carnegie- Mellon University

- Software Engineering Institute

Reengineering:
*0 An Engineering Problem

"Peter H. Feller

// July 1993

* **DTIC/ /" S ELECTEII

/ *,/ JUL23 1993 D

93-16589

Special Report
CMU/SEI-93-SR-5

July 1993

Reengineering:
An Engineering Problem

Peter H. Feller

Software Engineering Techniques Programn
Technology Division

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/ENS
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1993 by Carnegie Mellon University.

This document s available through the Defense Tedhnical Information Center. DTIC provides access to and tmnsfer of
srientific and lechnical information for DoD personnel, DoD contractors and potential contractors. and other U S Government
agency personnel and teir contractors. To obtain a copy, please contact DTIC directly Defense Technical Information
Center, Attn: FORA, Cameron Station. Alexandria, VA 223044145.
Copies of this document are also available through the National Technical Information Service. For informabon on ordering.
please contact NTIS directly: National Technical Information Service, U.S Department of Commerce. Springfold, VA 22161

Copies of this document are also available from Research Access Inc 800 Vinial S'ee! D-.sburgh PA 15212 "1"e,'e

S.. .- i I II

Table of Contents

1 Executive Summary 1

2 Introduction 3

2.1 Definition 3
2.2 Context 5

3 A Reengineering Framework 7
3.1 The Current System State 8
3.2 The Desired System State 9

3.3 System Understanding 9

3.4 Evolutionary Migration Path 12
3.5 An Engineering Framework 14

4 State of the Practice 17

5 Opportunities for Improvement of Reengineering 19
5.1 Advancement of State of the Art 20
5.2 Advancement of Software Engineerng Practice 21

5.2.1 Technology Trends 21
5.2.2 Engineering of Technology 22
5.2.3 Community Consensus Building 24
5.2.4 Transition Infrastructure 25

6 SEI Role in Improving Reengineering Practice 27
6.1 Ongoing SEI Software Engineering Activities 27
6.2 Potential SEI Reengineering Activities 29

Accesiori For
7 Conclusion AccS CR31NTIS CRA&I 3

DTIC TAB
8 Acknowledgments Unannounced El 33

Justification
References 35By

Dist. ibution I

Availability Codes
Avail and /or

" .Dist Special

CMU/SEI-93-SR-5

ii CMU/SEI-93-SR-5

List of Figures

Figure 2-1: Common View of Reengineering 4
Figure 3-1: Reengineering Problem Solving 7
Figure 3-2: Creating System Understanding 10
Figure 3-3: Representing System Understanding 10
Figure 3-4: Engineering Technology Base 12
Figure 3-5: System Evolution 13
Figure 5-1: Software Engineering Technology Maturity 19

CMU/SEI-93-SR-5

iv CMU/SEI-93-SR-5

Reengineering: An Engineering Problem

Abstract: This paper discusses a plan that addresses how the Software
Engineering Institute (SEI) may assist the Department of Defense (DoD) in
reengineering its large software-intensive systems. This plan is based on a
view of reengineering as an engineering problem to improve the cost-effective
evolution of large software-intensive systems. This view of reengineering,
which takes the whole software engineering process into account, fosters a
growth path by leveraging promising emerging software engineering
technologies. Reengineering also builds on the industry's improvement in its
ability to manage the software engineering process, an accomplishment of SEI
work in the Capability Maturity Model (CMM) and its key process areas.

1 Executive Summary

In the last several years, there has been significant discussion about the legacy of software
systems and reengineering. As a result of this attention, reengineering tools have begun to ap-
pear. Their focus is primarily on deriving information from code of legacy systems (reverse en-
gineering), on restructuring and retargeting code, and on mapping derived design information
into a new implementation. In particular, a number of tools exist to migrate information systems
implemented in COBOL to new platforms and to upgrade their data representation into a rela-
tional form.

While reengineering tools will help in certain aspects of reengineering, reengineering is no
more about tools than engineering is about tools. Just as engineering implies a disciplined pro-
cess supported by engineering methods and automated tools, reengineering practice requires
a disciplined process supported by methods and tools. In short, reengineering is viewed as an
engineering problem that requires a quantitative analysis of the problem and consideration of
engineering tradeoffs in its solution.

In response to Advanced Research Projects Agency (ARPA) guidance, the SEI proposes to
provide a leadership role in defining and advancing best reengineering practice, taking advan-
tage of current SEI activities in software engineering technologies and related ARPA activities
such as Domain Specific Software Architecture (DSSA), Software and Technology for Adapt-
able Reliable Systems (STARS), the Virginia Center of Excellence, as well as Air Force activ-
ities such as Central Archive for Reusable Defense Software (CARDS) and Software
Technology Support Center (STSC).

CMU/SEI-93-SR-5

The SEI proposes the following key activities to support the DoD's reengineering of large soft-
ware-intensive legacy systems:

"Develop a reengineering maturity framework. This framework identifies and
assesses the maturity of software engineering technologies in support of
reengineering and establishes quantitative methods as decision aids in
engineering tradeoff analyses. The technology results of this activity lead to
products such as a guide to best reengineering practice, a reengineering
technology roadmap, and a reengineering improvement strategy that
leverages reuse and domain-specific architectures initiatives.

" Accelerate the evolution of a taxonomy of domains and architectures and its
reduction into reengineering practice. Such a taxonomy is considered
essential for successful evolution of a software technology base and for
effective identification and promotion of dual use software technology.
Domain models and domain-specific architectures allow for more effective
reengineering beyond code-level program transformation.

" Identify and analyze desirable and undesirable system properties, their root
causes, and their effects. These include properties of legacy systems as well
as future systems. A catalog of such system properties is the basis for a
systematic (engineering) approach to effective system understanding of
legacy systems and their evolution strategies. An understanding of these
properties is an essential ingredient in the quantitative methods associated
with the reengineering maturity framework.

" Accelerate the evolution of the design record concept toward practical use.
The design record concept provides a focus for capture, representation, and
visualization of system information and knowledge. The SEI can become a
critical link between innovative technology research as directly sponsored by
ARPA and its reduction into state-of-the-practice technology. The results of
this task directly contribute to the evolution of a codified body of knowledge,
an essential element of any discipline.

The proposed activities will not only accelerate the advancement of reengineering practice,

but also contribute to the advancement of megaprogramming.

The purpose of this paper is to put the proposed activities in context. This is accomplished by

"* defining reengineering and its context (Chapter 1),

"* discussing a reengineering framework from a problem-solving perspective
(Chapter 2),

"* summarizing the state of practice in reengineering (Chapter 3),

"* outlining opportunities for improvement of reengineering (Chapter 4), and

"* summarizing the activities proposed by the SEI (Chapter 5).

2 CMU/SEI-93-SR-5

2 Introduction

In the last few years, the world has realized that the number of large systems being built from
scratch is rapidly diminishing while the number of legacy systems in use is very high. New sys-
tem capabilities are created by combining existing systems. At the same time, the context in
which these systems have been built has changed. Changes range from changes in the ap-
plication environment in which these systems operate (e.g., new sensors) to changes in hard-
ware and software technologies (e.g., dramatic increases in processor speed and memory,
high-level languages, improved methods). Some of the technologies used when these sys-
tems were built can hinder the system's ability to evolve to meet ever-changing demands in a
cost-effective way. As a result of these problems, a number of technology solutions have
sprung up under a variety of labels, including reengineering, reuse, recycling, modernization,
renovation, reconstitution, reverse engineering, design recovery, redocumentation, respecifi-
cation, redesign, restructuring, and retargeting. For a summary of software reengineering
technology, the reader is referred to [Arnold 93].

2.1 Definition

In this paper we are building on Chikofsky's work on a taxonomy [Chikofsky 90], the results of
the First Software Reengineering Workshop of the Joint Logistics Commanders Joint Policy
Coordinating Group on Computer Resources Management [Santa Barbara 92], as well as in-
sigi-ts from ARPA sponsored work including STARS, DSSA and from European efforts spon-
sored under the auspices of ESPRIT, Eureka (Eureka Software Factory), and the Institute for
Systems and Software Technology of the Frauenhofer Gesellschaft [ISST 92].

Definitions for reengineering found in the literature include:

"* the examination and alteration of an existing system to reconstitute it into a
new form and the subsequent implementation of the new form;

"* the process of adapting an existing system to changes in its environment or
technology without changing its overall functionality;

"* modification and possible further development of an existing system;

"* improvement of a system through reverse engineering (and restructuring)
followed by forward engineering.

Figure 2-1 illustrates a taxonomy of terms related to reengineering by Chikofsky. In th*.s com-
monly-accepted taxonomy, software system abstractions are represented in terms of life-cycle
phases. Shown are requirements, design, and implementation. The traditional process of de-
veloping a system by creating these abstractions is referred to as forward engineering. Re-
verse engineering is the process of analyzing an existing system; identifying system
components, abstractions, and interrelationships; and creating the respective representations.
Redocumentation and design recovery are two forms of reverse engineering. Redocumenta-
tion refers to the creation and revision of representations at the same level of abstraction, while

CMU/SEI-93-SR-5 3

design recovery refers to the utilization of external information including domain knowledge in
addition to observations of the existing system to identify meaningful higher levels of abstrac-
tion. The third process cor,.ponent of reengineenng is restructuring. Restructuring is the trans-
formation of represeri -tions at the same level of abstraction while preserving the system's
external behavior.. ,eengineering is an engineering process to reconstitute an existing system
into a new form through a combination of reverse engineering, restructuring, and forward en-
gineerig.

R
e
e Forward Engineering

n ~~~Forward Fowr
Requirements Design F Implementation

g
Design Design

n Recovery Res Recovery Redocument

e turing s Restructuring

e (R;n Reeng.

i Reverse Engineering
n ____
g

Figure 2-1: Common View of Reengineering

Reengineering relates closely to maintenance, which is generally viewed as cons."ting of cor-
rective, perfective, preventive, and adaptive maintenance. According to ANSI/IEEE Std 729-
1983, software maintenance is the "modification of a software product after delivery to correct
faults, to improve ;performance or other attributes, or to adapt the product to a changed envi-
ronment." In this paper we use the term system evolution to include software maintenance.

For the purposes of this paper, we take an encompassing view of reengineering ab addressing
the engineering problem of (improving) cost-effective evolution of large software intensive sys-
tems, both existing and future, through appropriate application of effective best-practice engi-
neering methods and tools. Evolution of many existing systems is considered as not being
cost-effective and cannot keep pace with changes in the application (domain) environment
and changes in the computing environment and software engineering technology. The term
legacy system has been attached to systems with such characteristics. Changes in the appli-
cation environment (the external environment the application system operates in) as well as
in the implementation environment (the hardware/software platform) have to be assumed as
a given and have to be accommodated (engineering for change). This need for engineering
for change applies to both existing systems and new (or future) systems.

4 CMU/SEI-93-SR-5

2.2 Context

The focus of this paper is on technical aspects of reengineering. However, economic, man-
agement, and acquisition aspects play as important a role in the successful improvement of
the capability to reengineer legacy systems.

The cost of incremental change to a legacy system needs to be reduced. Criteria for deciding
on the need for reengineering range from heuristics such as age of code and excessive main-
tenance personnel training cost (as found in a 198Q NIST document) to parameterized cost
models (see [ISST 92, Santa Barbara 92]). Improvement in this cost is anticipated by investing
more than the minimal amount into reflecting the requested change. The additional investment
would go into improving the way the system has been engineered with the result of smaller
incremental cost in the future. If several legacy systems have to be reengineered, their simi-
larities can be captured in a common reusable architecture, treating them as a family of sys-
tems rather than isolated point solutions. The cost models for reengineering, together with
better understanding of the effectiveness of different engineering techniques, will allow soft-
ware engineers to make reasonable engineering tradeoffs as they choose a particular evolu-
tionary reengineering strategy for a legacy system.

Engineering effectiveness is influenced by how well an organizetion is able to manage its en-
gineering process and improve its engineering capability. SEI has provided leadership for gov-
ernment and industry to improve these organizational software process capabilities through
work on the Capability Maturity Model (CMM) and its use as an assessment and improvement
tool. In the context of this paper we assume that the reader understands the relevance of such
capabilities for an organization's ability to systematically, efficiently, and effectively reengineer
legacy systems.

Successful improvement of legacy systems through reengineering also requires attention to
improvements in the acquisition process and to legal concerns. The Joint Logistics Command-
ers Joint Policy Coordinating Group on Computer Resources Management is holding a work-
shop series to address acquisition issues at the policy level. For further discussion of these
and other inhibitors to successful transition of improved software engineering practice see the
work done on transition models by SEI and others [Przybylinski 91; Leonard-Barton 88].

CMU/SEI-93-SR-5 5

6 CMUiSEI-93-SR-5

3 A Reengineering Framework

In this paper we have cast reengineering as an engineering problem. Problem solving involves
an understanding of the problem, i.e., a clear understanding of the root causes in terms of its
existing state, an understanding of the desired state, and a path (plan) to evolve from the cur-
rent state to the desired state. Figure 3-1 illustrates this. The current state reflects properties
of the existing system and the process by which the system is engineered (developed and
maintained). A subset of those properties is undesirable, reflecting the problem to be solved.
System understanding reflects the process of creating and maintaining an understanding of a
system (through analysis, elicitation, and capture). System evolution represents the engineer-
ing activity of migrating the existing system to the desired state. Based on an understanding
of the current and desired system state and available (re)engineering technology, an analysis
making engineering tradeoffs by considering technical, management, and economic risks and
constraints results in a (re)engineering plan. During the execution of this plan (i.e., the actual
evolution of the system through engineering activity), the plans may be reassessed taking into
consideration changes in the context (e.g., technical changes such as promising new technol-
ogies or economic changes such as budget reductions or increases).

(System Understanding)

Current Plan Desired Future

System System System

Figure 3-1: Reenglneering Problem Solving

CMU/SEI-93-SR-5 7

3.1 The Current System State

The root causes for the lack of cost-effective evolution fall into two categories: management
of the engineering process and the engineering process itself. Management of the engineering
process is addressed by SEI's work on CMM and will not be elaborated here. The second cat-
egory represents technology root causes, i.e., the engineering process, methods, and tools. It
will be the focus of further discussion.

The technology root causes manifest themselves in a number of ways. Some examples are:

" Data structures not cleanly implemented. Assumptions that a specific
element of shared memory (e.g., Fortran COMMON) is used as the
communication mechanism.

" System representations such as architectural and design descriptions
reflecting the application domain and the implementation approach may
never have been created or documented; the documentation (and
sometimes even the source code) is out of date.

" Assumptions about the application environment have been hardcoded in the
implementation. Examples include assuming a point solution including fixed
number and types of real-world objects.

" The computing environment evolved through several generations. For
example, early hardware platforms were memory-limited, resulting in a
number of sometimes (in today's view) convoluted implementation "tricks,"
such as overlay, instruction reuse, and cryptic user interaction. No operating
system support was assumed. Today's computing environments typically
consist of COTS standard operating systems, DBMS, window systems, and
networking support, and are geared toward a high degree of interactiveness
and "user-friendliness."

" The implementation technology has evolved from machine code with
absolute addressing; to symbolic assembler, high-level algorithmic
languages (COBOL, FORTRAN, ALGOL); to languages supporting data
abstraction, modularity, information hiding, concurrency support, data
modeling capabilities, etc. Design and implementation methods have been
coming and going, each leaving its trademark in the code of legacy systems.
This code may or may not accommodate the changes demanded from
systems today.

Legacy systems also have a number of properties that are worth preserving. Examples
include:

"* Legacy systems are deployed and have undergone the scrutiny of real users
with respect to their functionality meeting their real needs.

"* Nonfunctional properties such as performance and accuracy have been fine-
tuned.

8 CMU/SEI-93-SR-5

"* Corrective maintenance has resulted in "hardened" code and a wealth of test
and validation capabilities.

"* System history exists in the form of original designers, current and past
maintainers, as well as bug report and change order records.

In many cases some of the root causes and their implications may be understood by some
experts, but are not documented and available to the majority of software engineers. Informa-
tion about systems is quite limited, usually to the source code and/or executable, an opera-
tions manual, and people maintaining the system.

3.2 The Desired System State

The desired system state is a combination of properties of the existing system to be main-
tained, properties expected of a system as part of state-of-the-art software engineering prac-
tice and implementation technology, and properties that have their roots in changing
environments and are reflected in the system history, but may not have been explicitly ex-
pressed by the system user. Examples of maintained properties are functionality, perfor-
mance, and accuracy. Examples of properties resulting from best practice software
engineering and implementation technology include portability, modularity, structure, readabil-
ity, testability, data independence, documented system understanding, openness (open sys-
tem), interoperability, and seamless integration. Properties that address continuous change
and provide flexibility include localization of information regarding certain different types of
change in both the application domain and the implementation, introduction of virtual machine
abstractions, and parameterization (dynamic as well as generation technology), COTS, and
reuse of components. Properties that encourage reuse of existing engineering know-how in-
clude the existence of domain models, domain-independent software architectural principles,
domain-specific architectures, and adaptable components.

The desired system state may be known to system users, system maintainers, original system
builders, and best software engineering practice experts. The customer (user) may not neces-
sarily be aware of all the potentially desired properties and may only be willing and able to in-
vest in some. Some desired properties can be provided with proven technology, while others
depend on emerging technology whose maturity for practical application has not been dem-
onstrated.

3.3 System Understanding

The current state of an existing system and its desired state represent an understanding of the
system. This understanding is based on artifacts of the existing system; knowledge and expe-
rience with the system as it may exist in users', maintainers', and original builders' heads; and
documented system history in the form of bug reports and change records. Figure 3-2 illus-
trates the sources of information for system understanding. The artifacts are source code,
manuals, and the executing system. The knowledge and experience with the system include
understanding of engineering decisions, rationale, and possible or considered alternatives, as

CMU/SEI-93-SR-5 9

well as undocumented history and (typically nonfunctional) properties such as performance,
robustness, work-arounds, etc. History provides insight into robustness of system compo-
nents, types, and frequency of changes in the environment (and implementation).

System Artifacts System Experts System Histor

Source code Developers Error log
Manuals Maintainers Change orders
Running system Users

SSystem Understainding g

Figure 3-2: Creating System Understanding

Capture, representation, currency, and accessibility of this system understanding is a big chal-
lenge. Figure 3-3 illustrates a framework for representation of such system understanding. A
central component of system understanding is the system design records that document sys-
tem representations at different levels of abstraction. This is complemented with rationale for
design decisions, the software engineering process and methods used, and the evolution his-
tory. Let us first elaborate on models of (software) systems.

System Design Record

Models
'Domain Architecture Rationale

models
Performance Design Process
models

Relisbility Implementation History
\.models

Figure 3-3: Representing System Understanding

10 CMU/SEI-93-SR-5

These representations are models of the system. Models reflect views of the system focusing
on certain aspects with different degrees of detail. The purpose of a model is to present a view
that is understandable, i.e., not too complex. This is accomplished by the model capturing
those abstractions that are relevant from a particular perspective. Some models focus on ar-
chitectural issues while other models focus on data representation, behavioral, reliability and
performance aspects of a system. Examples of models are domain models, domain-specific
architectures, real-time timing models such as rate monotonic analysis (RMA), performance
models based on queuing theory, etc.

Models have different degrees of formality and may have the ability to be executed. The mod-
els may reflect designs (i.e., the notation they are expressed in needs to be transformed into
executable implementations), or they may be executable and capture all the desired user func-
tionality and can act as prototype implementations, which can be made more robust or efficient
through reimplementation (i.e., transformation into a modeling notation that more appropriate-
ly satisfies the need).

As more than one system is considered, models can show their similarities and differences.
Systems can be grouped into families. Some models focus on information about the applica-
tion domain (domain models) while others focus on the implementation architecture. Domain
models and domain-independent architectural modeling principles are combined to create do-
main-specific architectures. Those architectures are populated with components and adapt-
ed to the particular application needs. The result is a technology base of models that can be
(re)used for a number of systems, leveraging existing engineering know-how. Domain analy-
sis and architectural analysis contribute to the population of this technology base, while appli-
cation engineering can get adapted to utilizing these models (see Figure 3-4). Furthermore,
the technology base can be expanded by the emergence of new modeling concepts, e.g.,
safety modeling.

While some models represent the executing system itself, other models reflect constraints the
system must satisfy. Those are models used to validate desired system behavior. Examples
of such models are assertions validated in design reviews or verification, or translated into test
suites and test data validating the behavior of the running system. When reengineering a leg-
acy system, such test and validation models exist and have stood the test of time. They can
be leveraged for verification and validation of the desired system. Depending on the particular
migration path to the desired system, alternatives to full regression testing may be considered.
One example is validation of functional equivalence at a certain level of abstraction through
comparison of event traces [Britcher 90].

Engineering decisions, rationale, and alternatives complement these models. They may be
captured through elicitation processes such as IBIS [MicroComputer Corporation (MCC)]. The
models together with the engineering knowledge are known in other engineering disciplines
as experience modules.

CMU/SEI-93-SR-5 11

Technology Base

Technology Experience Modules

Model Base Rationale
Domain Architectural PRoce
Models Principles Process

Domain-Specific Architectures Experience

Components History

9 Syse

P

Sem SeC~urren. t Evolution Desired

Figure 3-4: Engineering Technology Base

In this idealized view, the amount of engineering information available to the engineer grows
tremendously, resulting in information overload. In order to cope with this situation an intelli-
gent intermediary (intelligent engineering assistant or engineering associate) will become es-
sential to the successful utilization of the system understanding. Technologies that are
potential contributors to this notion of intelligent assistant include case-based reasoning and
intelligent tutoring.

3.4 Evolutionary Migration Path

The understanding of the system, both the current and the desired system state, is the tech-
nical basis for determining the particular reengineering strategy to be chosen. It requires anal-
ysis, considering alternatives, and making engineering tradeoffs. Such a technical engineering
analysis consists of two major components: choosing the degree of legacy leverage, i.e., what
can be taken over and what has to be newly created; and choosing the approach for migrating
over to the desired system, i.e., how to introduce the changes into the system. The reengineer-
ing case study by Britcher [Britcher 90] nicely illustrates that no single approach is appropriate,
but engineering tradeoffs need to be considered.

12 CMU/SEI-93-SR-5

Legacy leverage refers to the ability to utilize (recycle) as much as possible of the existing sys-
tem in the process of evolving to the desired system. Both the existing and the desired system
can be described in terms of a collection of models. For the legacy system, code exists. Other
models may have to be derived from the code or other information sources. Certain abstrac-
tion may not exist in the legacy system or may reflect undesirable properties. The goal is to
eliminate undesirable properties while at the same time introduce desirable properties. Choic-
es have to be made as to which legacy system models to ignore, which ones to transform, and
which ones to leave intact. This is illustrated in Figure 3-5. The choices are driven by our un-
derstanding of the legacy and desired system properties as well as their reflection in the dif-
ferent models. In concrete terms this means that in some cases, undesirable properties of
legacy systems can be eliminated by massaging the code or transforming the data represen-
tation, while in other cases a new architecture or data model has to be developed and only a
few system components can be translated into the new implementation language.

)Architecture

S•@ Design

Eb 0'- 0 Code

Existing System Desired System

Figure 3-5: System Evolution

The change can be introduced in a number of ways. The following are three classic approach-
es, but hybrid approaches are possible:

* Big Bang Approach: The desired system may be built separately from the
legacy system, although parts of the legacy system may have been recycled.
Once completed the new system is put into operation while the old system is
shut down.

CMU/SEI-93-SR-5 13

"* Phase-out Approach, also known as Incremental Development: The
architecture of the desired system may be created and a skeleton
implementation developed. A mapping between the data representation of
the legacy and the desired system, implemented as a two-way
transformation filter allows the skeleton desired system to run as a shadow
of the "live" legacy system, while parts of the desired system implementation
are completed and incrementally added to the skeleton. This approach
incrementally phases out pieces of the legacy system.

"* Phase-in Approach, also referred to as Evolutionary Development: The
legacy system code may be restructured to introduce modularity and
partitioning. Desired system properties are incrementally introduced into the
existing system resulting in an incremental evolution of both the architecture
and the system components.

Validation of the desired system can utilize existing testing capabilities. Validation can be de-
composed into validating that the desired system still provides equivalent functionality and de-
tection of bugs in the reimplementation.

The choice of the particular reengineering strategy is affected by the risks the alternative ap-
proaches. Risks to consider are:

* Perceived and actual undesirable and desirable system properties
* Ability to eliminate or reduce undesirable system properties
* Maturity of technology inserted into the system
* Introduction of new technology to system maintainers (reengineers)
* Impact of introduction of the reengineered system
* Impact of system changes on performance and robustness
* Cost and time of reengineering

In summary, reengineering is an engineering activity that involves system understanding and
evolution through application of appropriate engineering practices. The framework outlined
here does not promote particular techniques but accommodates emerging technologies as
they mature.

3.5 An Engineering Framework

The framework presented above in the context of reengineering can be used as an engineer-
ing framework for software intensive systems. A full discussion of this point is beyond the
scope of this paper. The following characterization of different software engineering processes
and paradigms serves to quickly illustrate the validity of this claim:

* New system development: The system to be improved in the application
environment may be a system performing without computer support. This
legacy system has desirable properties to be maintained and undesirable
properties to be overcome. For example, for many information systems the
data model of the legacy system, though not documented, may be directly
applicable to the desired system. In traditional life-cycle terminology this is

14 CMU/SEI-93-SR-5

referred to as the requirements phase. Software recycle is applicable only if
parts of the legacy system are computer-based. For the introduction of the
new system the same migration alternatives may be considered as
discussed in the context of reengineering.

"Reengineering of future systems: Change in the application environment
and the implementation environment are givens. When a new system is
being defined, customers often focus on the functionality needed to address
their particular problem at that time. Many of the types of changes that will
occur over the lifetime of the system and their implications on desirable
system properties are not considered during requirement definition.
Reengineering of future systems implies that engineering for change and up-
to-date maintenance of a system understanding (system design records)
occurs from the outset. Engineering for change requires an understanding of
commonly-accepted changes as well as an anticipation of paradigm shifts
due to new technology and localization of assumptions about certain
environment constants.

" Open systems: The open systems concept has gained momentum over the
last few years, as reflected in organizations such as X-Open, Open Systems
Foundation (OSF), and the User Alliance for Open Systems. This concept
permits interoperability, allows rapid technology insertion and upgrade,
encourages alternative solutions to be applicable, and provides one
solution applicable in a number of systems. Characteristics of open systems
are modularity and standard interfaces. These are desirable properties of
both legacy and future systems as they reduce system cost.

" Reuse: Reuse is an engineering activity that focuses on the recognition of
commonalities of systems within and across domains. It consists of the
creation of models with different abstractions (ranging from code
components to domain models) and their use during the engineering of an
application. Thus, the focus is on the growth and utilization of the technology
base.

" Evolutionary development: Evolutionary development focuses on
designing the architecture of a system in such a way that the capabilities
offered to the user can grow incrementally. New capabilities may be
introduced through prototyping of new system components (possibly utilizing
different implementation technology). Such prototypes interoperate with the
operational system and may get hardened through incremental
reengineering.

" Megaprogramming: Megaprogramming focuses on recognition of system
commonalities at high levels of abstraction (e.g., architecture) and creation
of system instances through parameterized automatic composition or
generation.

"* Model-Based Software Engineering (MBSE): The objective of MBSE is to
improve the effectiveness and efficiency of producing software intensive
systems through better utilization of engineering experience and system
understanding. MBSE foci ises on the use of engineering product models as
the primary means for improving the construction and maintenance of
software.

CMU/SEI-93-SR-5 15

16 CMU/SEI-93-SR-5

4 State of the Practice

In many cases an organization with legacy system problems has a low level of maturity, i.e.,
has an ad hoc management process as well as an ad hoc engineering process and is in search
of the silver bullet in the form of the right reengineering tool. Much of the focus of reengineering
technology has been on tools. Availability of tools has been market driven. A majority of tools
attempt to satisfy the needs of the MIS community. This community has a vast number of leg-
acy systems and the dominating implementation language is COBOL.

Summaries of reverse and reengineering markets and technologies are documented in re-
ports such as [R-EvHa 90]. Categorizations of reengineering tools can be found in [IEEE 90]
and [IEEENews], as well as organizations categorizing tools such as Air Force Software Tech-
nology Support Center (AF STSC).

Reverse engineering (redocumentation) tools range from code formatters and cross-reference
generators to data flow and call graph generators. Analysis tools examine data structures,
identify unreachable code, and check for compatibility with language variants, e.g., compati-
bility with different C compilers. Other types of analysis tools focus on providing statistical
measures of "goodness" of code, e.g., McCabe metrics.

Restructuring tools are available for code translation, mostly for translation between different
variants of COBOL, but also for translation between languages. Another form of restructuring
supported by tools is data restructuring between representations, e.g., from a hierarchical to
a relational representation.

In a 1983 document NIST has provided criteria for deciding on the need for reengineering.
Such criteria range from age of code (greater than 7 years) to programs being emulated and
training cost of maintenance personnel being too high. More elaborate decision aids involve
economic cost models. The draft DoD Reengineering Economics Handbook is one example
of such tools.

The SEI has developed a curriculum module on maintenance/reengineering as part of the
Master of Software Engineering (MSE) curriculum development. This curriculum module re-
flects current practice and is being used in MSE programs at universities as well as in continu-
ing education programs. Furthermore, there are a number of commercial offerings of
reengineering courses and seminars, as well as practitioner conferences on the topic.

A number of other technologies contribute to the practice of reengineering, but are sometimes
not discussed in that context. Examples include:

* Rate Monotonic Analysis (RMA) as a real-time performance analysis
technique. The SEI has been instrumental in turning the underlying theory
into practical application.

CMU/SEI-93-SR-5 17

" Use of structural modeling and resulting models in the flight simulation
community. The SEt has been instrumental in moving that community from
Fortran and 60s programming techniques to Ada and modem software
engineering practices.

"* Component reuse through component libraries. Libraries for generic
components (e.g., stacks and queues), as well as for special application
domains (e.g., numerical algebra algorithms or missile guidance software
(CAMP)) exist. In some areas generation technology (e.g., parsers) toolkit
technology (DBMS and UIMS), and higher level languages (e.g., 4GL, SQL)
have evolved and been put into practice.

"* Quality of the system is improved through engineering process approaches
such as the cleanroom method and design or code inspections. Other key
process areas (KPA) as outlined in the CMM such as configuration
management (CM) can also greatly impact an organization's ability to keep
legacy systems up-to-date.

The SEI has projects in several other technical areas actively engaged in impacting practice
(e.g., Ada adoption, domain analysis and reuse, software architectures, process definition, CM
system concepts, environment integration and adoption, fault tolerance, Ada/SQL, risk as-
sessment and mitigation). These complement the SEI activities surrounding the CMM, orga-
nizational change, transitiot-, management, and software engineering education.

18 CMU/SEI-93-SR-5

5 Opportunities for Improvement of Reengineering

Improvement of reengineering practice has a number of facets. As pointed out earlier, this pa-
per focuses on the technical aspects of reengineering and its advancement. The technical as-
pect can be subdivided into advancement of state-of-the-art of reengineering technology and
advancement of reengineering practice. The first focuses on innovative research resulting in
the creation of new technological solution with potential for practical use. The second focuses
on reduction of promising technologies into engineering practices by creating awareness and
understanding, by reducing risk through trial use, and by improving practitioners through im-
provement and training programs. As part of its transition roie the SEI focuses on advancing
best practice (including assessment of advances of state-of-the-art) and on facilitating the ad-
vancement of common practice.

Advancement in reengineering practice is measurably accomplished through improvement in
the software process as outlined in the CMM, i.e., the management of software engineering,
whose key practice areas are spread across the five CMM levels, and a placeholder for soft-
ware development processes at level 3. In short, the CMM represents a Process Maturity
Scale (PMS). Actual engineering of software is driven by a second scale that reflects increas-
ing sophistication of software technology and its methodical (systematic) appli'ation. In this
paper we refer to this scale as the Software Engineering Technology Maturi4t Scale (TMS).
Figure 5-1 illustrates this scale in five units

1 2 3 4 5

Ad hoc Repeatable Defined Evaluating Optimizing

Informal Common Domain spec. Formal Cause/effect
artifacts architectures Quantitative Technology

Generators tradeoff

Figure 5-1: Software Engirmeering Technology Maturity

Progression through the units of this scale reflects:

"* increasing levels of abstraction,
"* increasing degree of formalism with theoretical foundation,
"* increasing automation, and
"* increasing optimization.

Success in improving the effectiveness and efficiency of systems engineering is accomplished
through a combination of the process maturity measure and technology maturity measure.

CMU/SEI-93-SR-5 19

The foundation for a technology maturity scale consists of conceptual frameworks and taxon-
omies and accompanying quantitative methods for analyzing technology areas with respect to
their applicability to a particular software engineering problem, e.g., reengineering or timing
problems in a hard real-time system.

The remainder of this section discusses advancement of the state-of-the-art (innovative re-
search), recognition of technology trends through analytical research, growth of the software
engineering technology base through engineering research, practitioner buy-in through com-
munity consensus building, and self-sustaining transitions by leveraging established infra-
structures. The discussion generates a list of opportunities for intellectual work to advance the
state of software engineering and reengineering.

5.1 Advancement of State of the Art

The state of the art is driven by the research agendas of funding agencies such as ARPA, Na-
tional Science Foundation (NSF), ESPRIT, Eureka, MITI, etc. BAA 93-11 of ARPA is just one
example of increased research attention on fusion and application of basic computer science
technology in a systematic manner, and system understanding at the architectural level, in
particular. Areas of interest to the funding agency and the discussion in this paper include:

"* High assurance systems: Hybrid approaches of formal methods integrated
with architecture, interface specification, and composition supported by
state-of-the-art Software Engineering Environments (SEEs)

"* Advanced environments: Advanced environment architectures and
framework prototypes, integration support including metalanguage
composition and process programming approaches

"* Component-based software: Component construction and adaptation as
well as architecture-based composition and assembly

" Domain-specific software: Domain analyses to capture domain-specific
architectures, pilot application engineering based on DSSA. Contributions to
precise representations of systems including architecture, module topology,
temporal dynamics, and hard real-time constraints

"* Software understanding and reengineering: Software asset
representation (SAR) and accessibility, design records, reuse, reverse
engineering, validation, and architecture representation

This trend is not new. A number of research program> ind efforts have been underway for
several years including ARPA's DSSA program, Prototech program, Rome Labs Knowledge-
Based Software Engineering (KBSE) program, as well as non-US efforts such es the ProSpec-
Tra, MACS, ReDo, Docket projects under the ESPRIT program as well as the Eureka Software
Factory (ESF) program.

20 CMU/SEI-93-sR-5

5.2 Advancement of Software Engineering Practice

As a federally funded research and development center (FFRDC), the SEI is considered a
neutral and objective party. Its mission causes it to focus on advancement of practice. Its lead-
ership role and its limited size requires the SEI to focus on high-leverage opportunities and,
along with other parties, to transition software engineering technology into practice (i.e., to fo-
cus on advancement of best practice and facilitate advancement of common practice). We will
proceed by first examining four perspectives that contribute to the advancement of software
engineering practice and then discuss SEI's role and possible contributions in light of its char-
acteristics (in particular the leadership role). These perspectives are:

"* analytical research in the form of technology-trend analysis,

"* engineering research in the form of maturation of state-of-the-art technology
into engineering use,

"* community consensus building, and

"* self-sustaining transition infrastructure.

These perspectives address the different phases of technology maturation: awareness, under-
standing, trial use, and institutionalization. SEI's role and potential contributions have to be
viewed in the context of its leadership role.

5.2.1 Technology Trends
Advances in the state of the art result in the creation of new technologies. These emerging
technologies may demonstrate the feasibility of a new concept, but their practicality has not
been demonstrated. Many hopes are placed in new technology, unfortunately often with little
systematic analysis.

Analytical research is a critical element to advancing best practice. Analytical research re-
quires conceptual frameworks to be created as analysis tools. The SEI has demonstrated the
value of such frameworks in a number of areas such as CM, CASE environments, model-
based software engineering, RMA, process concepts, etc. Technology assessments are per-
formed in the context of such a framework. Technology assessments do not require all prod-
ucts to be surveyed. They involve in-depth analysis of examples of technology to probe for
major advances. Such probing is accomplished through hands-on pilot studies in technology
testbeds and through case studies of technology application by others. Promising technology
may be identified. The identified technology can then be matured into a state that permits its
application in an engineering-like fashion (see below).

The conceptual framework and technology probes result in the recognition of possible tech-
nology trends. These trends can be mapped out in terms of technology roadmaps. These
roadmaps relate different technologies to each other and identify potential for technology fu-
sion, i.e., leveraged advances in practice through a combination of technological solutions.

CMU/SEI-93-SR-5 21

The technology roadmaps also provide feedback for innovative research, analytical research,
or engineering research in particular areas, as viewed from the perspective of improving best
practice. Examples of such feedback are the work in Ada 9X, a revision of the Ada language
standard to incorporate the latest insights in real-time support (engineering research) and the
need for a unified formal configuration management model (innovative research).

In specific terms, there is a need for conceptual frameworks and roadmaps at various levels.
The following is a progression of conceptual and analytical frameworks that culminate in a re-
engineering roadmap for improvement of reengineering practice. Such a roadmap will have
been validated through pilots and trial use lessons learned and experiences.

" a taxonomy of:

"* domains as the foundation for a base of domain models

"* architectures as the foundation for a base of architectures
"* desirable and undesirable system properties for existing and future

systems including their root causes and implications
"* quantitative models and methods ranging from domain specifics to

performance and reliability
"* a record of system understanding, i.e., capture and representation of system

information and experience

"* a reengineering technology maturity framework providing a basis for
reengineering improvement strategies

With its leadership role, the SEI is ideally positioned to take a very active role in establishing
such conceptual frameworks in cooperation with the research, industrial, and govemment
communities. Due to its ability to take objective and neutral views the SEI is able to evolve
technology roadmaps that reflect technology advances throughout the world and remain un-
tainted by the politics of companies, industries, and countries. The SEI has demonstrated its
ability to provide technical leadership by teaming up with other experts and fostering commu-
nity consensus (e.g., CMM and ISO 9000, software metrics, National Institute of Standards
and Technology/European Computer Manufacturers Association (NIST/ECMA) reference
model, Next Generation Computing Resources Project Support Environment Standards Work-
ing Group (NGCR PSESWG) reference model, North American PCTE Initiative (NAPI)).

5.2.2 Engineering of Technology

Technology identified as promising has to be matured for engineering through systematic ap-
plication in real-world pilot projects. Part of this maturing involves creation of prototype imple-
mentation of technology that scales up as well as adapts the engineering process to effectively
incorporate the technology. Lessons learned from the pilots identify benefits and limitations of
the technology. The experience gained from such pilot applications results in engineering ex-
pertise which, if captured and made available, allows other engineers to make engineering
tradeoffs without having to duplicate the learning experience.

22 CMU/SEI-93-SR-5

This leads to a number of activities that are essential for increasing our corporate engineering
knowledge. They include:

"* populating the model base, i.e., creation of domain models, domain-
independent architectural patterns, and domain-specific architectures in
various domains;

"* complementing the models with expertise, i.e., rationale, history, context and
assumptions and their consequences (system properties);

"* adapting engineering processes to be model-based, and refining of
engineering views such as reuse, reengineering, open systems, etc.; and

"* populating the reengineering maturity framework with key software
engineering technologies and validating of their effectiveness.

Such engineering knowledge becomes the foundation of software engineering as an engineer-
ing discipline. It can be captured in a software engineering handbook. Its content is driven by
the conceptual frameworks outlined above. It presents the engineer with applicable technolo-
gies, methods, and tools, strategies for choosing among them considering engineering trade-
offs, and for adapting the engineering process. Its structure allows new technologies, meth-
ods, and tools to be incorporated, thus, allowing it to reflect the state of best practice. It is sup-
ported by a compendium of handbooks detailing engineering activities at the tactical level from
the perspective of different engineering roles (e.g., reengineering economics handbook, Ada
adoption handbook, reuse handbook, RMA handbook, structural modeling guidebook, CASE
integration guide).

SEI's need to leverage its limited resources requires cooperation with a number of other par-
ties. Programs such as STARS, DSSA, PRISM, CARDS, etc., and other advanced technology
demonstrations (ATD) in both government and commercial industry provide fertile ground for
gaining engineering experience. The SEI has a number of ongoing efforts that build toward
software engineering as a discipline, ranging from domain analysis, software architectures,
elicitation of system understanding, and engineering of CASE environments, to real-time con-
cerns, fault tolerance, distribution, and simulation. The character of SEI projects has changed
from technology innovation to technology analysis and engineering. A number of other orga-
nizations have made similar shifts: as our understanding of software engineering matures as
do software engineering technologies. As a result, a number of frameworks, maturity models,
and handbooks are emerging (e.g., the reengineering economics handbook [Santa Barbara
92], reuse capability model [SPCNCOE 92], CMM-RealTime [SEISymposium 92]).

The SEI has an opportunity to take the lead in evolving a strategic framework for software en-
gineering as a discipline while leveraging ongoing work. Such a framework would result in
more effective coordination and leveraging of ongoing technology analysis and engineering
work.

CMU/SEI-93-SR-5 23

5.2.3 Community Consensus Building
Adoption of technology is facilitated by creating acceptance and by an appropriate technology
maturation infrastructure.

In the past, a number of technologies have become accepted because a major player domi-
nated the market. In that case, conceptual frameworks were of benefit to the technology user
because they provided an understanding of the technology at hand. In recent years, the sce-
nario has changed in that a number of products offer a particular technology and technologies
have to interoperate. The result is an increased need for technology providers to cooperate
and agree on technology standards rather than create technology niches. This is evidenced in
the increasing number of standardization activities initiated by industry through customer pres-
sure as well as through government and standards bodies. In this context conceptual frame-
works and their analytical use become consensus building tools, as they provide objective
insight into alternative technology solutions.

In several areas the SEI has recognized this shift and has taken on a technical leadership role
in selectively chosen community forums to foster agreement on a common view through an
agreed-upon conceptual framework. The benefit of such an approach is three-fold. First, the
evolution of the framework benefits from the contributions and critical review by technical ex-
perts participating in those forums. Second, the forum and its participants become the cham-
pions of the framework and assist in the technology transition to their community. Third, the
SEI leverages existing organizational infrastructure of the appropriate forum while focusing on
technical leadership. Some organizations have the charter of establishing and publishing stan-
dards (IEEE) or recommending standards for acquisition (NGCR, NIST), while others comple-
ment the standard with guides, validation suites, and certification processes (ISO, AJPO,
ECMA). Some organizations, e.g., NIST, have technology testbeds and outreach programs in
place for practitioners to gain insight into operational best-practice technology of particular in-
terest to smaller companies with limited research and development budgets. These standard-
ization and outreach activities establish an infrastructure for maturation and reduced
resistance for acceptance of technology.

On occasion, the SEI or one of the forum has recognized similarities in the problems being
addressed by two communities that seem to operate relatively independently. The technology
analysis research function can play an effective role in bridging these communities. Recogni-
tion and understanding of similarities and differences in the technical problems and pursued
solutions allows these communities to leverage from the experiences in their domain. This is
becoming especially relevant as dual-use of technology is becoming an important factor.

Examples of bridging communities with potential high pay-off include:

"* reuse and reengineering;

"* parser technology and pattern/message processing;
"* configuration management support in CASE, CAD, CAM, CAFE, etc.;

24 CMU/SEI-93-SR-5

"* environment integration and flexible environment architectures in CASE,
CAD, CAM, CAFE, etc.; and

"* command and control, logistics systems in military and commercial contexts
(e.g., Army movement, Federal Express).

5.2.4 Transition Infrastructure

" Current practice is advanced through institutionalization of technology.
Institutionalization is facilitated by a solid educational infrastructure for basic
and continued education, software engineering process groups, and
technology receptor groups.

" In its leadership role, the SEI has focused on creating a curriculum and
curriculum modules for a master's degree in Software Engineering (MSE),
including a module on maintenance/reengineering. This curriculum has been
the basis for a number of university software engineering programs as well
as for in-house industry and commercial continuing education programs. In
leveragin., its limited resources, the SEI benefits from focusing on a process
for incorporating advances in best practice into the curriculum, and from
cooperating in the development and piloting of courses, leaving the
adaptation and delivery to the educators in the community. As conceptual
frameworks mature, they can provide additional conceptual structure through
incorporation into the curriculum.

" The SEI is taking on an active leadership role in the identification and
transition of technology-intensive solutions to education and training.
Utilization of on-line presentation material and the software engineering
video network (SEVN), including satellite connections, are already in place.
Technology work in advanced tutoring based on multi-media technology at
the SEI and involvement of the CMU School of Computer Science (SCS) in
a multi-media educational technology consortium (with Intel, Sony,
Pittsburgh Public Television Corporation QED) offer an opportunity to
provide insight into educational technology trends.

" A number of SEI projects are cooperating with transition agents in outside
organizations (e.g., DISA, STSC). SEI's focus on advancing best practice
allows the SEI to provide strategic technology insight, while the transition
agent organization concentrates on operationalizing technology transition at
the tactical level.

CMU/SEI-93-SR-5 25

26 CMU/SEI-93-SR-5

6 SEI Role in Improving Reengineering Practice

First, we summarize ongoing activities that contribute to the solution of the problem of reengi-
neering. Then, we outline a set of activities that have great potential for advancing our under-
standing of software engineering and reengineering in particular, for which the SEI is in a
position to take the lead and cooperate with CMU-SCS on the research components.

6.1 Ongoing SEI Software Engineering Activities

For the past 5-6 years, the SEI has had the lead in evolving and applying the five-level soft-
ware process Capability Maturity Model (CMM). Its focus has been on the management of the
engineering process. Accompanying this activity, a core competence in process modeling
(i.e., the capture of processes in process definitions) has evolved and is providing the technical
lead in the STARS Process Asset Library (PAL) effort. A second accompanying effort in pro-
cess metrics has established a guide to process measures in the context of the CMM.

Over the last 2-3 years, the SEI has evolved a framework and quantitative methods for assess-
ing management and technology risks. This assessment instrument is being piloted in both
government and industry and is starting to find its way into industry practices.

The SEI over the last 3-4 years has taken Rate Monotonic Analysis (RMA) theory through en-
gineering research resulting in a quantitative method for software engineers to systematically
analyze and design systems to meet hard real-time criteria. This activity has culminated in an
RMA handbook and self-sustaining transition of the technology.

The SEI is in the process of evolving conceptual frameworks to address reliability properties
of systems through fault tolerance and zero defect approaches.

The SEI has focused on moving practitioners' attention from searching for the best tool or
method, i.e., silver bullet, to capturing system information in models of increasing levels of ab-
straction (e.g., in form of domain specific software architectures). For that purpose, the term
Model-Based Software Engineering (MBSE) has been used. Some of the work in the use of
models has its roots in SEIs efforts 6 years ago in helping the flight simulator community to
move from FORTRAN to Ada through a pattern-based approach. This has resulted in struc-
tural modeling as a method for expressing flexible flight simulator (and other application) ar-
chitectures. This method is currently being captured in a guidebook. Other contributions are
SEI's work in domain models, i.e., a framework, process, and method for creation of domain
models through utilization of commercially available design notations and methods, the pilot-
ing of domain modeling in the user interface and logistics domains, and the evolution of an ap-
plication engineering process centered around domain models and complemented with
structural modeling. This activity closely interacts with DSSA, STARS, and CARDS. Current
emphasis of this MBSE view to application engineering is on a reuse perspective. In a related
research activity with the CMU School of Computer Science (SCS), software architecture prin-
ciples and an architectural taxonomy are being explored.

CMU/SEI-93-SR-5 27

The SEI is investigating use of technology for software engineering information capture, rep-
resentation, and accessibility. This is being accomplished through fusion of state-of-the-art
technologies in elicitation, hyper- and multi-media, information abstraction, and advanced tu-
toring. This activity has its roots in Advanced Learning Techniques and support for ARPA's
High Definition Display (HDD) program. It has strong interactions with the CMU Engineering
Design Research Center (EDRC), the Robotics, and Information Technology Center (ITC),
and is a partner in the Mediamation Alliance, whose other partners include Pittsburgh Public
Television Corporation QED, CMU-SCS, Sony, and Intel. Through the incorporation of ad-
vances in ARPA's design record effort, a technology framework in support of system under-
standing can be evolved (resources permitting).

Computer-aided environments (CASE, CAD, CAM, CAFE, CAPE) are large systems that have
to be engineered as flexible, oper "vster, supporting various engineering processes. This is
a challenge as CASE tools have E df-life of 3-5 years, with many releases in that period. The
SEI has been instrumental in helping the community understand the complexity of issues in-
volved in assembling and adopting CASE environments. This has been accomplished through
conceptual frameworks for CASE adoption and CASE integration. These frameworks are be-
ing used by IEEE, NIST, and NGCR to identify and strategically pursue areas of standardiza-
tion in support of open systems and interoperability in CASE environments. The same
frameworks have become the foundation for guidance to practitioners for adopting CASE tech-
nology and for an environment technology roadmap. As such, CASE environments technology
is becoming a (model-based) software engineering domain in its own right with several com-
mercial players emerging. The framework for the environment technology roadmap has been
designed to accommodate advances in process enactment technology; the SEI is actively
tracking this technology. The frameworks clearly identify the great overlap between CASE,
CAD, CAM, CAFE, and CAPE and the respective groups have shown interest in this work il-
lustrating the benefits of models to recognize commonalities within and across domains. In the
long term, process-centered environment technology and technology for managing software
engineering information (see above) is envisioned to fuse into a system providing intelligent
engineering assistance utilizing codified engineering knowledge normally found in handbooks
and in the minds of experts.

The SEI recognizes that software engineering is a team activity that must be supported. Com-
ponents of a CASE environment (i.e., individual tools) focus on supporting individual engi-
neers. Configuration management (CM) systems provide support in controlling concurrent
engineering activities and maintaining a history of software evolution. The SEI took the lead in
establishing a conceptual framework for CM services. This framework is used as a guidepost
for practitioners to examine commercial products and for researchers to unify CM concepts.
As research in cooperative work (a.k.a. groupware, concurrent engineering support) technol-
ogy is maturing, its applicability in the context of engineering environments will have to be in-
vestigated.

In summary, although the SEI does not currently have a focus on reengineering, many of the
pieces are already in place.

28 CMU/SEI-93-SR-5

6.2 Potential SEI Reengineering Activities

This section focuses on reengineering specific activities that are strategically important to the
advancement of reengineering practice and are appropriate for the SEI to take on. The activ-
ities lead to a reengineering maturity framework and technology roadmap that permits organi-
zations to improve their reengineering capabilities. New insights gained from these activities
feed into a best-practice reengineering guide to keep practitioners abreast of improving prac-
tice.

The central activity is:

Develop a reengineering maturity framework. This activity will leverage SEI's
activities in engineering of systems, i.e., application engineering with domain
models, domain-specific architectures, RMA as a timing model, etc. as well
as research activities on reengineering at CMU-SCS. This activity will focus
on identifying technologies for reengineering systems, assessing their
maturity and effectiveness, and evolving quantitative methods supporting
engineering trade-offs to be made by practitioners. Products potentially
include a guide to best reengineering practice, a reengineering technology
roadmap, and a reengineering improvement strategy by leveraging reuse
focused activities.

Key activities that provide the foundation for a reengineering maturity framework are:

" Accelerate the evolution of a taxonomy of domains and architectures. This
work builds on existing activities at the SEI and CMU-SCS as well as outside
activities. The taxonomy is considered essential for effective identification
and promotion of dual use software technology.

" Identify and analyze system properties (desirable and undesirable) as well as
their roots and effects. The innovative research component explores the
identification and analysis of new system properties. The analytical research
component consists of locating and consolidating previously identified
properties. A catalog of such system properties is the basis for a systematic
(engineering) approach addressing effective system understanding and
evolution strategies for legacy systems.

" Accelerate the evolution of the design record concept toward practical use by
incorporating pragmatic results regarding system properties. The SEI can
provide a link between innovative technologists and the state-of-practice.
Building on existing activities, the SEI can be instrumental in technology
fusion of several technologies for intelligent capture, representation, and
access to engineering information.

These activities do not by themselves accomplish major improvement in reengineering capa-
bilities. They provide the structural and analytical framework to allow a reengineering and re-
use infrastructure to evolve to meet practitioners' needs. The infrastructure has to grow in
cooperation with other partners. Population of a software engineering technology base with re-
sults from DSSA, STARS, ATDs, etc., can be accomplished in a self-sustaining manner once
the domain and architecture taxonomy have gained community consensus. These activities

CMU/SEI-93-SR-5 29

can leverage currently evolving infrastructure such as CARDS, STSC, etc. The Virginia Center
of Excellence (VCOE) in reuse and technology transfer can be leveraged as a transition infra-
structure into aerospace industry. Similarly, other transition agents can be leveraged.

In summary, the above activities will not only accelerate the advancement of reengineering
practice, but also contribute to the advancement of megaprogramming and to the improve-
ment of the maturity of software engineering technology.

30 CMU/SEI-93-SR-5

7 Conclusion

Reengineering has been presented as an engineering problem. As such, reengineering draws
from a number of software engineering technologies. Advances in best practice of (re)engi-
neering benefit from innovative research (i.e., creation of new technology solutions); analytical
research (i.e., recognition of promising technologies and technology trends); and engineering
research (i.e., the maturation of technology into engineering use). Due to its limited resources
(currently approximately 50-60 members of the technical staff addressing engineering of soft-
ware and its education) and its leadership role, the SEI can best contribute to reengineering
by advancing best practice through contribution of conceptual frameworks. Evolution of such
frameworks for subareas of software engineering has been successfully leveraged throuah
technical leadership in selected community forums. In the context of reengineering, sucl,
model outlines a roadmap for improvement in our effectiveness and efficiency to reengineer
systems.

CMU/SEI-93-SR-5 31

32 CMU/SEI-93-SR-5

8 Acknowledgments

The thoughts expressed in this paper have been evolving within the SEI as well as in the soft-
ware engineering community. The author attempted to condense them into these pages. I am

particularly thankful for Floyd Hollister's inspiration to view reengineering from a problem-solv-

ing perspective. The content of this paper was shaped by discussions with and input from

Floyd Hollister, Sholom Cohen, John Salasin, Jim Withey, Dennis Smith, Bemd Bruegge from

CMU-SCS, Maribeth Carpenter, John Goodenough, and Doug Waugh. I also would like to

thank Larry Druffel for his insightful review of an earlier draft of this document.

CMU/SEI-93-SR-5 33

34 CMUISEI-93-SR-5

References

[Arnold 93] Arnold, R.S., Software Reengineering, IEEE Computer Society
Press, Los Alamitos, CA, 1993.

[Britcher 90] Britcher, R.N., "Re-engineering software: A case study," IBM Systems
Journal, Vol. 29, No. 4, 1990., pp. 551-567.

[Chikofsky 90] Chikofsky, E.J. & Cross II, J.H., "Reverse Engineering and Design
Recovery: A Taxonomy," IEEE Software, January 1990, pp. 13-17.

[Przybylinski 91] Przybylinski, S.R., Fowler, P.J., and Maher Jr., J.H., "Software Tech-
nology Transition," a tutorial presented at the 13th International Con-
ference on Software Engineering, Austin, TX, May 12, 1991.

[IEEE 90] IEEE Software, Editor-in-Chief: Ted Lewis, Published by the IEEE
Computer Society, Elsevier Science Publishing Co. Inc., New York,
NY, May 1990.

[IEEENews] Software Engineering Technical Committee Newsletter, IEEE Com-
puter Society/TCSE, Editor: Samuel T. Redwine, Jr., Vol. 11, No. 3,
January 1993.

[ISST 92] Witschurke, R., "Wiederverwendung in der Informationsverarbeitung:
Re-use, Re-engineering, Reverse Engineering," ISSN 0943-1624, In-
stitut fur Software und Systemtechnik, Universitat Dortmund, Germa-
ny, December 1992.

[Leonard-Barton 88] Leonard-Barton, Dorothy, "Implementation as Mutual Adaptation of
Technology and Organization." Research Policy, 17 (5), pp. 251-267,
October 1988.

[R-EvHa 90] Rock-Evans, R.; Hales, K.: Reverse Engineering: Markets, Methods
and Tools. London: Ovum LTD. 1990.

[Santa Barbara 92] Santa Barbara 1, "Back to the Future Through Reengineering," Joint
Logistics Commanders Joint Policy Coordinating Group on Computer
Management, Santa Barbara, CA, November 1992.

[SEISymposium 92] Capability M..urity Model (CMM) Real-Time Extensions, Daniel Roy,
Software Engineering Symposium, Camegie Mellon University, Soft-
ware Engineering Institute, Pittsburgh, PA, September 1992.

[SPCNCOE 92] Reuse Adoption Guidebook, SPC-92051-CMC, Version 01.00.03,
Produced by the Software Productivity Consortium Services Corpora-
tion, under contract to the Virginia Center of Excellence, Hemdon,
VA, November 1992.

CMU/SE1-93-SR-5 35

36 CMU/SEI-93-SR-5

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-93-SR-5

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, stage, and zip code)

Carnegie Mellon University HQ ESC/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116

SU. NAME OFFUNDING/SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) F1962890C0003
SEI Joint Program Office ESC/ENS

8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNITPittsburgh PA 15213 ELEMENT NO NO. NO NO.

63756E N/A N/A N/A

II. TITLE (Include Security Classification)

Reengineering: An Engineering Problem

12. PERSONAL AUTHOR(S)

Peter H. Feiler

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT

Final FROM TO July 1993 46
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. software engineering, software-intersýve systems, reengineering,
reengineering tools,

19. ABSTRACT (continue on reverse if necessary and identify by block number)

This paper discusses a plan that addresses how the Software Engineering Institute (SEI) may assist
the Department of Defense (DoD) in reengineering its large software-intensive systems. This plan is
based on a view of reengineering as an engineering problem to improve the cost-effective evolution
of large software-intensive systems. This view of reengineering, which takes the whole software engi-
neering process into account, fosters a growth path by leveraging promising emerging software engi-
neering technologies. Reengineering also builds on the industry's improvement in its ability to
manage the software engineering process, an accomplishment of SEI work in the Capability Maturity
Model (CMM) and its key process areas.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNUMITED f SAME AS RP[] ulnc USERS § Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include area code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/ENS (SE!)

DD FORM 1473. 3 APR EDmON of I JAN 73 IS OBSOLETE UNLIMITED. UNCLASSIFED

